Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Microbiol ; 81(4): 108, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461425

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Virulência , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Fatores de Virulência
2.
Environ Res ; 251(Pt 2): 118687, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493853

RESUMO

The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.

3.
Environ Geochem Health ; 46(3): 111, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466501

RESUMO

With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Metais Pesados , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Humanos , Água/análise , Águas Residuárias , Disruptores Endócrinos/análise , Metais Pesados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
4.
Polymers (Basel) ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399856

RESUMO

Since ancient times, essential oils (EOs) derived from aromatic plants have played a significant role in promoting human health. EOs are widely used in biomedical applications due to their medicinal properties. EOs and their constituents have been extensively studied for treating various health-related disorders, including cancer. Nonetheless, their biomedical applications are limited due to several drawbacks. Recent advances in nanotechnology offer the potential for utilising EO-loaded nanoparticles in the treatment of various diseases. In this aspect, chitosan (CS) appears as an exceptional encapsulating agent owing to its beneficial attributes. This review highlights the use of bioactive EOs and their constituents against breast cancer cells. Challenges associated with the use of EOs in biomedical applications are addressed. Essential information on the benefits of CS as an encapsulant, the advantages of nanoencapsulated EOs, and the cytotoxic actions of CS-based nanoencapsulated EOs against breast cancer cells is emphasised. Overall, the nanodelivery of bioactive EOs employing polymeric CS represents a promising avenue against breast cancer cells in preclinical studies.

5.
Mol Biotechnol ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964101

RESUMO

Conventionally, increasing the yield of microalgal biomass has been the primary focus of research, while the significant protein reserve within this biomass has remained largely unexplored. This protein reserve possesses substantial value and versatility, offering a wide range of prospective applications and presenting an enticing chance for innovation and value enhancement for various sectors. Current study employed an innovative research approach that focused solely on the LCA of protein production potential from microalgal biomass, a lesser-explored aspects within this domain. Most environmental impact categories were shown to be significantly affected by cultivation phase because of the electrical obligation, followed by the harvesting and protein extraction phase. Still, the environmental aspect was seen to yield a minimal impact on global warming potential, i.e., 4 × 10-3 kg CO2, underscoring the ecologically favorable nature of the process. Conversely, the overall energy impact was seen to intensify with NEB of - 39.33 MJ and NER of 0.49, drawing attention to the importance of addressing the energy aspect to harness the full potential of microalgal protein production.

6.
Chemosphere ; 339: 139699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532206

RESUMO

Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.


Assuntos
Microalgas , Biocombustíveis , Biotecnologia , Bioengenharia , Biomassa
7.
Food Technol Biotechnol ; 61(2): 151-159, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37457903

RESUMO

Research background: The presence of Yersinia enterocolitica on raw food products raises the concern of yersiniosis as most of the berries are consumed raw. This is a challenging issue from the food safety aspect since it could increase the occurrence of foodborne diseases among humans. Thus, it is crucial to implement an effective sanitation before the packaging. Experimental approach: This study aims to synthesize and characterize thymol-loaded polyvinyl alcohol (Thy/PVA) nanoparticles as a sanitizer for postharvest treatment of blueberries. Thy/PVA nanoparticles were characterized by spectroscopic and microscopic approaches, prior to the analyses of antimicrobial properties. Results and conclusions: The diameter size of the nanoparticles was on average 84.7 nm, with a surface charge of -11.73 mV. Based on Fourier transform infrared (FTIR) measurement, the Thy/PVA nanoparticles notably shifted to the frequency of 3275.70, 2869.66, 1651.02 and 1090.52 cm-1. A rapid burst was observed in the first hour of release study, and 74.9 % thymol was released from the PVA nanoparticles. The largest inhibition zone was displayed by methicillin-resistant Staphylococcus aureus (MRSA), followed by Y. enterocolitica and Salmonella typhi. However, amongst these bacteria, the inhibition and killing of Y. enterocolitica required a lower concentration of Thy/PVA nanoparticles. The treatment successfully reduced the bacterial load of Y. enterocolitica on blueberries by 100 %. Novelty and scientific contribution: Thymol is a plant-based chemical without reported adverse effects to humans. In this study, by using the nanotechnology method of encapsulation with PVA, we improved the stability and physicochemical properties of thymol. This nanoparticle-based sanitizer could potentially promote the postharvest microbiological safety of raw berries, which may become an alternative practice of food safety.

8.
Chemosphere ; 338: 139492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451643

RESUMO

Vancomycin is the last resort antibiotic for the treatment of severe bacterial keratitis. Its clinical application is limited due to its hydrophilicity and high molecular weight. To overcome this, this study aims to develop nanoparticles-laden contact lens for controlled ocular delivery of vancomycin. Polyvinyl alcohol (PVA) was used as encapsulant material. The nanoparticles had a negative surface charge and an average size of 147.6 nm. A satisfactory encapsulation efficiency (61.24%) was obtained. The release profile was observed to be slow and sustained, with a release rate of 1.29 µL mg-1 h-1 for 48 h. Five out of 6 test bacteria were suppressed by vancomycin nanoparticles-laden contact lens. Vancomycin is generally ineffective against Gram-negative bacteria and unable to pass through the outer membrane barrier. In this study, vancomycin inhibited Proteus mirabilis and Pseudomonas aeruginosa. Nano-encapsulation enables vancomycin to penetrate the Gram-negative cell wall and further destroy the bacterial cells. On Hohenstein challenge test, all test bacteria exhibited significant reduction in growth when exposed to vancomycin nanoparticles-laden contact lens. This study created an effective and long-lasting vancomycin delivery system via silicone hydrogel contact lenses, by using PVA as encapsulant. The antibiotic efficacy and vancomycin release should be further studied using ocular in vivo models.


Assuntos
Lentes de Contato , Nanopartículas , Antibacterianos/farmacologia , Vancomicina/farmacologia , Preparações de Ação Retardada/farmacologia
9.
Chemosphere ; 337: 139293, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369285

RESUMO

Crude oil pollution is one of the most serious environmental issues today, and the clean-up procedure is perhaps the most difficult. Within one to three weeks, the vast majority of oil bacteria may degrade approximately 60% of the crude oil, leaving approximately 40% intact. The by-product metabolites produced during the breakdown of oil are essentially organic molecules in nature. These metabolites inhibit its enzymes, preventing the oil bacteria from further degrading the oil. By combining a variety of different oils with heterotrophic bacteria in a bioreactor, the rate of crude oil biodegradation was accelerated. In this study, two strains of oil-resistant, heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) and a bacterium that uses hydrocarbons (AR3-Pseudomonas pseudoalcaligenes) were used. Gas chromatography-mass spectroscopy was used to investigate the effectiveness of this consortium of symbiotic bacteria in the biodegradation of crude oil. According to gravimetric and gas chromatography analyses, the consortium bacteria digested 69.6% of the crude oil in the bioreactor, while the AR3 single strain was only able to destroy 61.9% of it. Under the same experimental conditions, consortium bacteria degraded approximately 84550.851 ppb (96.3%) of 16 aliphatic hydrocarbons and 9333.178 ppb (70.5%) of 16 aromatic hydrocarbons in the bioreactor. It may be inferred that the novel consortium of symbiotic bacteria accelerated the biodegradation process and had great potential for use in increasing the bioremediation of hydrocarbon-contaminated locations.


Assuntos
Petróleo , Petróleo/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Reatores Biológicos
10.
Chemosphere ; 336: 139212, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315854

RESUMO

Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.


Assuntos
Embalagem de Alimentos , Pectinas , Animais , Bovinos , Alginatos/farmacologia , Antibacterianos/farmacologia , Plásticos
11.
Nat Prod Res ; 37(10): 1674-1679, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35879820

RESUMO

This study aimed to assess the antimicrobial activity of endophytic Phyllosticta fallopiae L67 isolated from Aloe vera against diabetic wound microorganisms and characterise their active fraction for biologically important metabolites. The dichloromethane (DCM) extract exhibited the most significant activity with inhibition zones ranging from 11.33 to 38.33 mm. The minimal inhibitory and lethality concentrations of DCM extract ranged from 78.13 to 2500.00 µg/ml and 625.00 to 5000.00 µg/ml, respectively. The extract showed teratogenicity and lethality in the zebrafish model, where peritoneal and hepatic oedema occurred at 62.50 µg/ml, and no abnormality appeared at 31.25 µg/ml. The extract also inhibited more than 82% biofilm formation. Bioassay-guided fractionation on DCM extract yielded 18 fractions and the most active fraction was subjected to UPLC-QTOF-MS/MS analysis. Flavones, stilbenes, flavanonols, isoflavonoids, phenolic glycosides and phenol derivatives were detected. In conclusion, endophytic P. fallopiae possessed bioactive metabolites with significant antimicrobial activity against diabetic wound microorganisms.


Assuntos
Aloe , Anti-Infecciosos , Diabetes Mellitus , Animais , Espectrometria de Massas em Tandem , Peixe-Zebra , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
12.
Int J Biol Macromol ; 210: 742-751, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513100

RESUMO

Nanoencapsulation has appeared as an alternative approach to protect the bioactive constituents of essential oils (EOs) and to improve their properties. In this study, Cynometra cauliflora essential oils (CCEOs) were nanoencapsulated in chitosan nanoparticles (CSNPs) using an emulsion-ionic gelation technique. Transmission electron microscopy (TEM) images illustrated a well dispersion and spherical shape of C. cauliflora EOs-loaded chitosan nanoparticles (CCEOs-CSNPs) with an average size of less than 100 nm. In addition to that, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) analyses revealed the success of CCEOs nanoencapsulation. The encapsulation efficiency (EE) was in the range of 38.83% to 44.16% while the loading capacity (LC) reached 32.55% to 33.73%. The antioxidant activity (IC50) of CCEOs-CSNPs was ranged from 21.65 to 259.13 µg/mL when assessed using DPPH radical scavenging assay. CCEOs-CSNPs showed an appreciable antimicrobial effects on diabetic wound microorganisms. Notably, cytotoxic effects against human breast cancer MCF-7 and MDA-MB-231 cells recorded IC50 of 3.72-17.81 µg/mL and 16.24-17.65 µg/mL, respectively, after 72 h treatment. Interestingly, no cytotoxicity against human breast normal MCF-10A cells was observed. Thus, nanoencapsulation using CSNPs could improve the properties of CCEOs in biomedical related applications.


Assuntos
Anti-Infecciosos , Antineoplásicos , Quitosana , Nanopartículas , Óleos Voláteis , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Quitosana/química , Humanos , Nanopartículas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Fungi (Basel) ; 8(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628774

RESUMO

Endophytic fungi are a promising source of bioactive metabolites with a wide range of pharmacological activities. In the present study, MS-based metabolomics was conducted to study the metabolomes variations of endophytic Diaporthe fraxini ED2 grown in different culture media. Total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays were conducted to assess the antioxidant potential of the fungal extracts. Multivariate data analysis (MVDA) was employed in data analysis and interpretation to elucidate the complex metabolite profile. The supplemented culture medium of D. fraxini fungal extract stimulated the production of metabolites not occurring in the normal culture medium. Antioxidant activity studies revealed the potential of supplemented cultured fungal extract of D. fraxini as a source of antioxidants. The present findings highlight that fungal culture medium supplementation is an effective approach to unravelling the hidden metabolome in plant-associated fungal diversity.

14.
World J Microbiol Biotechnol ; 37(9): 152, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398332

RESUMO

ß-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of ß-lactamase producing bacterial strains eliminated the use of ß-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with ß-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of ß-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 ß-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).


Assuntos
Ácido Cólico/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Inibidores de beta-Lactamases/farmacologia , Ampicilina/farmacologia , Sinergismo Farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Penicilinas/farmacologia , beta-Lactamases/metabolismo
15.
J Fungi (Basel) ; 8(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35049968

RESUMO

Endophytic fungi are microorganisms that colonize living plants' tissues without causing any harm. They are known as a natural source of bioactive metabolites with diverse pharmacological functions. Many structurally different chemical metabolites were isolated from endophytic fungi. Recently, the increasing trends in human health problems and diseases have escalated the search for bioactive metabolites from endophytic fungi. The conventional bioassay-guided study is known as laborious due to chemical complexity. Thus, metabolomics studies have attracted extensive research interest owing to their potential in dealing with a vast number of metabolites. Metabolomics coupled with advanced analytical tools provides a comprehensive insight into systems biology. Despite its wide scientific attention, endophytic fungi metabolomics are relatively unexploited. This review highlights the recent developments in metabolomics studies of endophytic fungi in obtaining the global metabolites picture.

16.
Food Technol Biotechnol ; 59(4): 422-431, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136367

RESUMO

RESEARCH BACKGROUND: Microbial contamination of food products is one of the significant causes of food spoilage and foodborne illnesses. The use of active packaging films incorporated with antimicrobial agents can be a measure to improve food quality and extend shelf life. Nevertheless, antimicrobial agents such as silver, copper, titanium and zinc in the packaging films have raised concerns among consumers due to toxicity issues. EXPERIMENTAL APPROACH: The current study aims to develop biodegradable gelatine-based edible films incorporated with microcapsules of Clitoria ternatea-derived anthocyanins as a natural antimicrobial agent. The impact of incorporation of microcapsules with anthocyanins on the morphology, thermal, mechanical, water vapour barrier and physicochemical properties of the gelatine films was evaluated in this study. The effectiveness of the developed films against foodborne pathogens and their application for perishable food protection were also investigated. RESULTS AND CONCLUSIONS: The results show that incorporating anthocyanin microcapsules enhances the gelatine film physical and mechanical properties by increasing the thickness, tensile strength, Young's modulus and elongation at break of the films. Scanning electronic microscopy analysis revealed that the film surface morphology with anthocyanin microcapsules had a homogeneous and smooth surface texture compared to the control. The thermogravimetric analysis also showed a slight improvement in the thermal properties of the developed films. Agar well diffusion assay revealed that the developed films exhibit significant inhibition against a broad-spectrum of bacteria. Furthermore, the films composed of gelatine with anthocyanin microcapsules significantly reduced the total viable count of microorganisms in the bean curd during storage for 12 days compared with the control films. NOVELTY AND SCIENTIFIC CONTRIBUTION: Increasing global awareness of healthy and safe food with minimal synthetic ingredients as preservatives has sparked the search for the use of antimicrobial agents of natural origins in active food packaging material. In this study, a safe and effective active packaging film was developed using an environmentally friendly biopolymer, gelatine film incorporated with microcapsules of Clitoria ternatea-derived anthocyanins as a natural antimicrobial agent. This study demonstrated that such a method is not only able to improve the film physical properties but can also significantly prolong the shelf life of food products by protecting them from microbial spoilage.

17.
J Microbiol Biotechnol ; 31(4): 493-500, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627761

RESUMO

Endophytic fungi are symbiotically related to plants and spend most of their life cycle within them. In nature, they have a crucial role in plant micro-ecosystem. They are harnessed for their bioactive compounds to counter human health problems and diseases. Endophytic Diaporthe sp. is a widely distributed fungal genus that has garnered much interest within the scientific community. A substantial number of secondary metabolites have been detected from Diaporthe sp. inhabited in various plants. As such, this minireview highlights the potential of Diaporthe sp. as a rich source of bioactive compounds by emphasizing on their diverse chemical entities and potent biological properties. The bioactive compounds produced are of significant importance to act as new lead compounds for drug discovery and development.


Assuntos
Ascomicetos/química , Produtos Biológicos/química , Descoberta de Drogas , Endófitos/química , Estrutura Molecular , Plantas/microbiologia
18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-969338

RESUMO

Aims@#To evaluate the antibacterial efficacy of ethyl acetate extract of Aspergillus flavus IBRL-C8 against Gram-positive and Gram-negative bacteria.@*Methodology and results@#In this experiment, an endophytic fungus which identified as A. flavus IBRL-C8 was extracted using ethyl acetate and methanol, from Senna siamea, prior to in vitro antibacterial test on eight Gram-bacteria. The results were significantly more enunciated to the ethyl acetate extract since the Gram-bacteria signified 9.0 to 20.0 mm of inhibition zones on Muller Hinton Agar (MHA) during disc diffusion assay. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extract were ranged from 125-1000 µg/mL and 125-2000 µg/mL, respectively. Time-kill assay depicted the ethyl acetate extract of A. flavus IBRL-C8 exceptionally retarded methicillin-resistant Staphylococcus aureus (MRSA) and also manifested extended antibacterial activity. The maximum reduction in cell numbers occurred at 2MIC concentration (250 µg/mL) during the interval time of 16 h. The malformations noticed from microscopic observations where the transformation of structural annihilation from regular spherical morphology to non-spherical shape with an irregular surface and also disruption around the cell membrane when the MRSA treated with ethyl acetate extract of A. flavus IBRL-C8. @*Conclusion, significance and impact of study@#This study proposed the ethyl acetate extract of A. flavus IBRL-C8 as a potential antibacterial agent against MRSA infection, which can be useful in pharmaceutical application.


Assuntos
Aspergillus flavus , Antibacterianos
19.
Sci Rep ; 10(1): 3307, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094395

RESUMO

Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.


Assuntos
Araceae/química , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/microbiologia , Nanopartículas/química , Óleos Voláteis/uso terapêutico , Cicatrização , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Quitosana/química , Colágeno/metabolismo , Diabetes Mellitus/patologia , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Óleos Voláteis/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
20.
Nat Prod Res ; 34(23): 3404-3408, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30773054

RESUMO

Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and ß-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 µg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.


Assuntos
Anti-Infecciosos/farmacologia , Garcinia/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Anti-Infecciosos/química , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7 , Malásia , Testes de Sensibilidade Microbiana , Óleos Voláteis/análise , Folhas de Planta/química , Sesquiterpenos/análise , Sesquiterpenos/farmacologia , Sesquiterpenos de Germacrano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...